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Abstract

Envy-freeness up to one good (EF1) is a well-studied fair-
ness notion for indivisible goods that addresses pairwise envy
by the removal of at most one good. In the worst case, each
pair of agents might require the (hypothetical) removal of
a different good, resulting in a weak aggregate guarantee.
We study allocations that are nearly envy-free in aggregate,
and define a novel fairness notion based on information with-
holding. Under this notion, an agent can withhold (or hide)
some of the goods in its bundle and reveal the remaining
goods to the other agents. We observe that in practice, envy-
freeness can be achieved by withholding only a small num-
ber of goods overall. We show that finding allocations that
withhold an optimal number of goods is computationally hard
even for highly restricted classes of valuations. In contrast to
the worst-case results, our experiments on synthetic and real-
world preference data show that existing algorithms for find-
ing EF1 allocations withhold a close-to-optimal amount of
information.

1 Introduction

When dividing discrete objects, one often strives for a fair-
ness notion called envy-freeness (Foley 1967), under which
no agent prefers the allocation of another agent to its own.
Such outcomes might not exist in general (even with only
two agents and a single indivisible good), motivating the
need for approximations. Among the many approximations
of envy-freeness proposed in the literature (Lipton et al.
2004; Budish 2011; Nguyen and Rothe 2014; Caragiannis et
al. 2016), the one that has found impressive practical appeal
is envy-freeness up to one good (EF1). In an EF1 allocation,
agent a can envy agent b as long as there is some good in b’s
bundle whose removal makes the envy go away. It is known
that an EF1 allocation always exists and can be computed in
polynomial time (Markakis 2017).

On closer scrutiny, however, we find that EF1 is not as
strong as one might think: In the worst case, an EF1 alloca-
tion could entail the (hypothetical) removal of every good,
because the elimination of each agent’s envy may require
the removal of a different good. To see this, consider an in-
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stance with six goods g1, . . . , g6 and three agents a1, a2, a3
whose (additive) valuations are as follows:

g1 g2 g3 g4 g5 g6
a1 1 1 4 1 1 4

a2 1 4 1 1 4 1

a3 4 1 1 4 1 1

Observe that the allocation shown via circled goods is
EF1, since any pairwise envy can be addressed by removing
an underlined good. However, each pair of agents requires
the removal of a different good (e.g., a1’s envy towards a2
is addressed by removing g3 whereas a3’s envy towards a2
is addressed by removing g4, and so on), resulting in a weak
approximation overall (since all goods need to be removed
over all pairs of agents).

The above example shows that EF1, on its own, is too
coarse to distinguish between allocations that remove a
large number of goods (such as the one with circled en-
tries) and those that remove only a few (such as the one with
underlined entries, which, in fact, is envy-free). This limi-
tation highlights the need for a fairness notion that (a) can
distinguish between allocations in terms of their aggregate
approximation, and (b) retains the “up to one good” style
approximation of EF1 that has proven to be practically use-
ful (Goldman and Procaccia 2014). Our work aims to fill this
important gap.

We propose a new fairness notion called envy-freeness up
to k hidden goods (HEF-k), defined as follows: Say there are
n agents, m goods, and an allocation A = (A1, . . . , An).
Suppose there is a set S of k goods (called the hidden set)
such that each agent i withholds the goods in Ai ∩ S (i.e.,
the hidden goods owned by i) and only discloses the goods
in Ai \ S to the other agents. Any other agent h �= i only
observes the goods disclosed by i (i.e., those in Ai \ S),
and its valuation for i’s bundle is therefore vh(Ai \ S) in-
stead of vh(Ai). Additionally, agent h’s valuation for its own
bundle is vh(Ah) (and not vh(Ah \ S)) because it can ob-
serve its own hidden goods. If, under the disclosed alloca-
tion, no agent prefers the bundle of any other agent (i.e., if
vh(Ah) ≥ vh(Ai \ S) for every pair of agents i, h), then
we say that A is envy-free up to k hidden goods (HEF-k). In
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other words, by withholding the information about S, allo-
cation A can be made free of envy.

Notice how HEF-k addresses the previous concerns: Like
EF1, HEF-k is a relaxation of envy-freeness that is defined
in terms of the number of goods. However, unlike EF1, HEF-
k offers a precise quantification of the extent of information
that must be withheld in order to achieve envy-freeness.

Clearly, any allocation can be made envy-free by hiding
all the goods (i.e., if k = m). The real strength of HEF-k lies
in k being small; indeed, an HEF-0 allocation is envy-free.
As we will demonstrate below, there are natural settings that
admit HEF-k allocations with a small k (i.e., hide only a
small number of goods) even when (exact) envy-freeness is
unlikely.

Information Withholding is Meaningful in Practice. To
understand the usefulness of HEF-k, we generated a syn-
thetic dataset where we varied the number of agents n from
5 to 10, and the number of goods m from 5 to 20 (we ignore
the cases where m < n). For every fixed n and m, we gen-
erated 100 instances with binary valuations. Specifically, for
every agent i and every good j, the valuation vi,j is drawn
i.i.d. from Bernoulli(0.7). Figure 1a shows the heatmap of
the number of instances out of 100 that do not admit envy-
free outcomes. Figure 1b shows the heatmap of the number
of goods that must be hidden in the worst-case. That is, the
color of each cell denotes the smallest k such that each of the
corresponding 100 instances admits some HEF-k allocation.
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(a) Heatmap of the fraction of
instances that are not envy-free.
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(b) Heatmap of the number of
goods that must be hidden.

Figure 1: In both figures, each cell corresponds to 100 in-
stances with binary valuations for a fixed number of goods
m (on X-axis) and a fixed number of agents n (on Y-axis).

It is evident from Figure 1 that even in the regime where
envy-free outcomes are unlikely (in particular, the red-
colored cells in Figure 1a), there exist HEF-k allocations
with k ≤ 3 (the light blue-colored cells in Figure 1b). This
observation, along with the foregoing discussion, shows
that fairness through information withholding is a well-
motivated approach towards approximate envy-freeness that
yields promising existence results in practice.

Our Contributions We make contributions on three
fronts.
• On the conceptual side, we propose a novel fairness no-
tion called HEF-k as a fine-grained generalization of envy-
freeness in terms of aggregate approximation.
• Our theoretical results (Section 4) show that computing
HEF-k allocations is computationally hard even for highly
restricted classes of valuations (Theorem 1 and Corollary 1).
We show a similar result when HEF-k is coupled with

Pareto optimality (Theorem 2). We also provide an alterna-
tive proof of NP-completeness of determining the existence
of an envy-free allocation for binary valuations (Proposi-
tion 3).
• Our experiments show that HEF-k allocations with a
small k often exist, even when envy-free allocations do not
(Figure 1). We also compare several known algorithms for
computing EF1 allocations on synthetic and real-world pref-
erence data, and find that the round-robin algorithm and a re-
cent algorithm of Barman, Krishnamurthy, and Vaish (2018)
withhold close-to-optimal amount of information, often hid-
ing no more than three goods (Section 5).

2 Related Work

An emerging line of work in the fair division literature con-
siders relaxations of envy-freeness by limiting the informa-
tion available to the agents. Notably, Aziz et al. (2018) con-
sider a setting where each agent is aware only of its own bun-
dle and has no knowledge about the allocations of the other
agents. They propose the notion of epistemic envy-freeness
(EEF) under which each agent believes that an envy-free al-
location of the remaining goods among the other agents is
possible. Note that in EEF, each agent might consider a dif-
ferent hypothetical assignment of the remaining goods, and
each of these could be significantly different from the ac-
tual underlying allocation. By contrast, under HEF-k, each
agent evaluates its valuation with respect to the same (un-
derlying) allocation. Chen and Shah (2017) study a related
model where agents have probabilistic beliefs about the al-
locations of the other agents, and envy is defined in expecta-
tion. Chan et al. (2019) study a setting similar to Aziz et al.
(2018) wherein each agent is unaware of the allocations of
the other agents, with the guarantee that it does not get the
worst bundle.

Another related line of work considers settings where the
agents constitute a social network and can only observe the
allocations of their neighbors (Abebe, Kleinberg, and Parkes
2017; Bei, Qiao, and Zhang 2017; Chevaleyre, Endriss,
and Maudet 2017; Aziz et al. 2018; Beynier et al. 2018;
Bredereck, Kaczmarczyk, and Niedermeier 2018). These
works place an informational constraint on the set of agents,
whereas our model restricts the set of revealed goods per
agent.

Several other forms of fairness approximations have
been proposed recently, such as by introducing side pay-
ments (Halpern and Shah 2019), permitting sharing of some
goods (Sandomirskiy and Segal-Halevi 2019), or donating
a small fraction of goods (Caragiannis, Gravin, and Huang
2019).

3 Preliminaries

Problem instance An instance I = 〈[n], [m],V〉 of the
fair division problem is defined by a set of n ∈ N agents
[n] = {1, 2, . . . , n}, a set of m ∈ N goods [m] =
{1, 2, . . . ,m}, and a valuation profile V = {v1, v2, . . . , vn}
that specifies the preferences of every agent i ∈ [n] over
each subset of the goods in [m] via a valuation function
vi : 2[m] → N ∪ {0}. Notice that each agent’s valuation
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for any subset of goods is assumed to be a non-negative inte-
ger. We will assume that the valuation functions are additive,
i.e., for any i ∈ [n] and G ⊆ [m], vi(G) :=

∑
j∈G vi({j}),

where vi(∅) = 0. We will write vi,j instead of vi({j}) for
a singleton good j ∈ [m]. We say that an instance has bi-
nary valuations if for every i ∈ [n] and every j ∈ [m],
vi,j ∈ {0, 1}.
Allocation An allocation A := (A1, . . . , An) refers to an
n-partition of the set of goods [m], where Ai ⊆ [m] is the
bundle allocated to agent i. Given an allocation A, the utility
of agent i ∈ [n] for the bundle Ai is vi(Ai) =

∑
j∈Ai

vi,j .

Definition 1 (Envy-freeness). An allocation A is envy-free
(EF) if for every pair of agents i, h ∈ [n], vi(Ai) ≥ vi(Ah).
An allocation A is envy-free up to one good (EF1) if for
every pair of agents i, h ∈ [n] such that Ah �= ∅, there exists
some good j ∈ Ah such that vi(Ai) ≥ vi(Ah \ {j}). An
allocation A is strongly envy-free up to one good (sEF1) if
for every agent h ∈ [n] such that Ah �= ∅, there exists a good
gh ∈ Ah such that for all i ∈ [n], vi(Ai) ≥ vi(Ah \ {gh}).
The notions of EF, EF1, and sEF1 are due to Foley (1967),
Budish (2011), and Conitzer et al. (2019), respectively.1

Definition 2 (Envy-freeness with hidden goods). An al-
location A is said to be envy-free up to k hidden goods
(HEF-k) if there exists a set S ⊆ [m] of at most k goods
such that for every pair of agents i, h ∈ [n], we have
vi(Ai) ≥ vi(Ah \ S). An allocation A is envy-free up to
k uniformly hidden goods (uHEF-k) if there exists a set
S ⊆ [m] of at most k goods satisfying |S ∩ Ai| ≤ 1 for
every i ∈ [n] such that for every pair of agents i, h ∈ [n], we
have vi(Ai) ≥ vi(Ah \ S). We say that allocation A hides
the goods in S and reveals the remaining goods. Notice that
a uHEF-k allocation is also HEF-k but the converse is not
necessarily true. Indeed, in Proposition 2, we will present an
instance that, for some k ∈ N, admits an HEF-k allocation
but no uHEF-k allocation.

Remark 1. It follows from the definitions that an allocation
is EF if and only if it is HEF-0. It is also easy to verify that
an allocation is sEF1 if and only if it is uHEF-n. This is be-
cause the unique hidden good for every agent is also the one
that is (hypothetically) removed under sEF1. Additionally,
as discussed in Section 1, an EF1 allocation might not be
uHEF-k for any k ≤ n.

We say that allocation A is HEF with respect to set S if A
becomes envy-free after hiding the goods in S, i.e., for every
pair of agents i, h ∈ [n], we have vi(Ai) ≥ vi(Ah \ S). We
say that k goods must be hidden under A if A is HEF with
respect to some set S such that |S| = k, and there is no set
S′ with |S′| < k such that A is HEF with respect to S′.

Definition 3 (Pareto optimality). An allocation A is Pareto
dominated by another allocation B if vi(Bi) ≥ vi(Ai) for
every agent i ∈ [n] with at least one of the inequalities being
strict. A Pareto optimal (PO) allocation is one that is not
Pareto dominated by any other allocation.

1A slightly weaker notion than EF1 was previously studied by
Lipton et al. (2004). However, their algorithm can be shown to
compute an EF1 allocation.

Definition 4 (EF1 algorithms). We will now describe four
known algorithms for finding EF1 allocations that are rele-
vant to our work.

Round-robin algorithm (RoundRobin): Fix a permu-
tation σ of the agents. The RoundRobin algorithm cycles
through the agents according to σ. In each round, an agent
gets its favorite good from the pool of remaining goods.

Envy-graph algorithm (EnvyGraph): This algorithm,
proposed by Lipton et al. (2004), works as follows: In each
step, one of the remaining goods is assigned to an agent that
is not envied by any other agent. The existence of such an
agent is guaranteed by resolving cyclic envy relations (if any
exists) in a combinatorial structure called the envy-graph of
an allocation.

Fisher market-based algorithm (Alg-EF1+PO): This
algorithm, due to Barman, Krishnamurthy, and Vaish (2018),
uses local search and price-rise subroutines in a Fisher mar-
ket associated with the fair division instance, and returns an
EF1 and PO allocation. The bound on running time of this
algorithm is pseudopolynomial (a polynomial in vi,j instead
of log vi,j).

Maximum Nash Welfare solution (MNW): The Nash so-
cial welfare of an allocation A is defined as NSW(A) :=(∏

i∈[n] vi(Ai)
)1/n

. The MNW algorithm computes an allo-
cation with the highest Nash social welfare (called a Nash
optimal allocation). Caragiannis et al. (2016) showed that a
Nash optimal allocation is both EF1 and PO.
Remark 2. Conitzer et al. (2019) observed that
RoundRobin, Alg-EF1+PO, and MNW algorithms
all satisfy sEF1. It is easy to see that EnvyGraph algo-
rithm is also sEF1. However, note that among the above
algorithms, only MNW and Alg-EF1+PO are known to
also satisfy PO.2 The allocations computed by all four
algorithms have the property that there exists some agent
that is not envied by any other agent. Indeed, MNW and
Alg-EF1+PO are both PO and therefore cannot have
cyclic envy relations, and RoundRobin and EnvyGraph
algorithms have this property by design. For such an agent
(not necessarily the same agent for all four algorithms), no
good needs to be removed under sEF1. Therefore, from
Remark 1, all these algorithms are also envy-free up to
n− 1 uniformly hidden goods, or uHEF-(n− 1).

Proposition 1. Given an instance with additive valuations,
a uHEF-(n− 1) allocation always exists and can be com-
puted in polynomial time, and a uHEF-(n− 1) + PO allo-
cation always exists and can be computed in pseudopolyno-
mial time.
Remark 3. Note that for any k < n−1, an HEF-k allocation
might fail to exist. Indeed, with n agents that have identical
and positive valuations for m = n−1 goods, some agent will
surely miss out and force the allocation to hide all n−1 (i.e.,
k+1 or more) goods. Therefore, the bound in Proposition 1
for uHEF-k (and hence, for HEF-k) is tight in terms of k.

2It is also known that RoundRobin and EnvyGraph fail to
satisfy PO; see, e.g., (Conitzer, Freeman, and Shah 2017).
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Relevant Computational Problems

Definition 5 formalizes the decision problem of whether a
given instance admits an HEF-k allocation.

Definition 5 (HEF-k-EXISTENCE). Given an instance I,
does there exist an allocation A and a set S ⊆ [m] of at most
k goods such that A is HEF w.r.t. S?

Notice that a certificate for HEF-k-EXISTENCE consists
of an allocation A as well as a set S of at most k hidden
goods. Another relevant computational question involves
checking whether a given allocation A is HEF with respect
to some set S ⊆ [m] of at most k goods.

Definition 6 (HEF-k-VERIFICATION). Given an instance
I and an allocation A, does there exist a set S ⊆ [m] of k
goods such that A is HEF w.r.t. S?

For additive valuations, both HEF-k-EXISTENCE and
HEF-k-VERIFICATION are in NP. The next problem per-
tains to the existence of envy-free allocations.

Definition 7 (EF-EXISTENCE). Given an instance I, does
there exist an envy-free allocation for I?

EF-EXISTENCE is known to be NP-complete (Lipton
et al. 2004). From Remark 1, it follows that HEF-k-
EXISTENCE is NP-complete when k = 0 for additive val-
uations.

4 Theoretical Results

We will now present our theoretical results concerning the
existence and computation of HEF-k and uHEF-k alloca-
tions. We first show that uHEF-k is a strictly more demand-
ing notion than HEF-k (Proposition 2).

Proposition 2. There exists an instance I that, for some
fixed k ∈ N, admits an HEF-k allocation but no uHEF-k
allocation.

Proof. Consider the fair division instance I with five agents
a1, . . . , a5 and six goods g1, . . . , g6 shown in Table 1. Ob-
serve that the allocation A = (A1, . . . , A5) with A1 =
{g1, g2}, A2 = {g3}, A3 = {g4}, A4 = {g5}, A5 = {g6}
satisfies HEF-2 with respect to the set S = {g1, g2}.

g1 g2 g3 g4 g5 g6
a1 1 1 2 0 0 0
a2 1 1 2 0 0 0
a3 10 10 1 1 1 1
a4 10 10 1 1 1 1
a5 10 10 1 1 1 1

Table 1: The instance used in the proof of Proposition 2.

We will show that I does not admit a uHEF-2 allocation.
Suppose, for contradiction, that there exists an allocation B
satisfying uHEF-2. Then, B must hide g1 and g2 (otherwise,
at least one of a3, a4 or a5 will envy the owner(s) of these
goods). Thus, in particular, the good g3 must be revealed by
B. Assume, without loss of generality, that g3 is not assigned
to a1 in B (otherwise, a similar argument can be carried out
for a2). Then, B must assign both g1 and g2 to a1 (so that a1

does not envy the owner of g3). However, this violates the
one-hidden-good-per-agent property of uHEF-k, which is a
contradiction.

Recall from Section 3 that HEF-k-EXISTENCE is NP-
complete when k = 0. This still leaves open the question
whether HEF-k-EXISTENCE is NP-complete for any fixed
k ∈ N. Our next result (Theorem 1) shows that this is in-
deed the case, even under the restricted setting of identical
valuations (i.e., for every j ∈ [m], vi,j = vh,j for every
i, h ∈ [n]).

Theorem 1 (Hardness of HEF-k-EXISTENCE). For any
fixed k ∈ N, HEF-k-EXISTENCE is NP-complete even for
identical valuations.

Proof. We will show a reduction from PARTITION, which
is known to be NP-complete (Garey and Johnson 1979).
An instance of PARTITION consists of a multiset X =
{x1, x2, . . . , xn} with xi ∈ N for all i ∈ [n]. The goal
is to determine whether there exists Y ⊂ X such that∑

xi∈Y xi =
∑

xi∈X\Y xi = T , where T := 1
2

∑
xi∈X xi.

We will construct a fair division instance with k+3 agents
a1, . . . , ak+3 and n+ k + 1 goods. The goods are classified
into n + 1 main goods g1, . . . , gn+1 and k dummy goods
d1, . . . , dk. The (identical) valuations are defined as follows:
Every agent values the goods g1, . . . , gn at x1, . . . , xn re-
spectively; the good gn+1 at T , and each dummy good at
4T .

(⇒) Suppose Y is a solution of PARTITION. Then, an
HEF-k allocation can be constructed as follows: Assign the
main goods corresponding to the set Y to agent a1 and those
corresponding to X \ Y to agent a2. The good gn+1 is as-
signed to agent a3. Each of the remaining k agents is as-
signed a unique dummy good. Note that every agent in the
set {a1, a2, a3} envies every agent in the set {a4, . . . , ak+3},
and these are the only pairs of agents with non-zero envy.
Therefore, the allocation can be made envy-free by hiding
the k dummy goods, i.e., the allocation is HEF with respect
to the set {d1, . . . , dk}.

(⇐) Now suppose there exists an HEF-k allocation A.
Since there are k dummy goods and k+3 agents, there must
exist at least three agents that do not receive any dummy
good in A. Without loss of generality, let these agents be
a1, a2 and a3 (otherwise, we can reindex). We claim that
all dummy goods must be hidden under A. Indeed, agent a1
does not receive any dummy good, and therefore its maxi-
mum possible valuation can be v(g1 ∪ · · · ∪ gn+1) = 3T <
v(dj) for any dummy good dj . If some dummy good dj is
not hidden, then a1 will envy the owner of dj , contradicting
HEF-k. Therefore, all dummy goods must be hidden, and
since there are k such goods, these are the only ones that can
be hidden.

The above observation implies that the good gn+1 must be
revealed by A. Furthermore, gn+1 must be assigned to one
of a1, a2 or a3 (otherwise, by pigeonhole principle, one of
these agents will have valuation at most 2T

3 and will envy the
owner of gn+1). If gn+1 is assigned to a3, then the remaining
main goods g1, . . . , gn must be divided between a1 and a2
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such that v(A1) ≥ T and v(A2) ≥ T . This gives a partition
of the set X .

Another commonly used preference restriction is that of
binary valuations (i.e., for every i ∈ [n] and j ∈ [m],
vi,j ∈ {0, 1}). We note that even under this restriction, HEF-
k-EXISTENCE remains NP-complete when k = 0 (Corol-
lary 1). This observation follows from a result of Aziz et
al. (2015), who showed that determining the existence of an
envy-free allocation is NP-complete even for binary valu-
ations (Proposition 3). We provide an alternative proof of
this statement in the full version of the paper (Hosseini et al.
2019).

Proposition 3 (Aziz et al. 2015; Theorem 11). EF-
EXISTENCE is NP-complete even for binary valuations.

Corollary 1. For k = 0, HEF-k-EXISTENCE is NP-
complete even for binary valuations.

Proposition 3 is also useful in establishing the computa-
tional hardness of finding an HEF-k+PO allocation. Note
that unlike Corollary 1, Theorem 2 holds for any fixed
k ∈ N.

Theorem 2 (Hardness of HEF-k+PO). Given any instance
I with binary valuations and any fixed k ∈ N∪{0}, it is NP-
hard to determine if I admits an allocation that is envy-free
up to k hidden goods (HEF-k) and Pareto optimal (PO).

Proof. (Sketch) Starting from any instance of EF-
EXISTENCE with binary valuations (Proposition 3), we add
to it k new goods and k + 1 new agents such that all new
goods are approved by all new agents (and no one else).
Also, the new agents have zero value for the existing goods.
In the forward direction, an arbitrary allocation of new goods
among the new agents works. In the reverse direction, PO
forces each new (respectively, existing) good to be assigned
among new (respectively, existing) agents only. The imbal-
ance between new agents and new goods means that all (and
only) the new goods must be hidden. Then, the restriction of
the HEF-k allocation to the existing agents/goods gives the
desired EF allocation.

We will now proceed to analyzing the computational
complexity of HEF-k-VERIFICATION. Here, we show a
hardness-of-approximation result (Theorem 3). Note that
HEF-k-VERIFICATION is stated as a decision problem.
However, one can consider an approximation version of
this problem as follows: A c-approximation algorithm for
HEF-k-VERIFICATION is one that, given any fair division
instance, computes a set of goods of size at most c · kopt,
where kopt is the size of the smallest hidden set for the given
instance. Under this definition, Theorem 3 can be inter-
preted as follows: Given any ε > 0, there is no polynomial-
time (1 − ε). lnE-approximation algorithm for HEF-k-
VERIFICATION, unless P=NP.

Theorem 3 (HEF-k-VERIFICATION inapproximability).
Given any ε > 0, it is NP-hard to approximate HEF-k-
VERIFICATION to within (1− ε) · lnE even for binary valu-
ations, where E is the sum of all non-negative pairwise envy
values in the given allocation.

Proof. We will show a reduction from HITTING SET. An
instance of HITTING SET consists of a finite set X =
{x1, . . . , xp}, a collection F = {F1, . . . , Fq} of subsets of
X , and some k ∈ N. The goal is to determine whether there
exists Y ⊆ X , |Y | ≤ k that intersects every member of F
(i.e., for every F ∈ F , Y ∩ F �= ∅). It is known that given
any ε > 0, it is NP-hard to approximate HITTING SET to
within a factor (1− ε) · ln |F| (Dinur and Steurer 2014).

We will construct a fair division instance with n = q + 1
agents and m = p +

∑q
i=1(|Fi| − 1) goods. The agents

are classified into q dummy agents a1, . . . , aq and one main
agent aq+1. The goods are classified into p main goods
g1, . . . , gp and q distinct sets of dummy goods, where the
ith set consists of the goods f i

1, . . . , f
i
|Fi|−1.

The valuations are as follows: The main agent approves
all the main goods, i.e., for all j ∈ [p], vq+1({gj}) = 1.
Each dummy agent ai approves the dummy goods in the ith

set as well as those main goods that intersect with Fi, i.e.,
for every i ∈ [q], vi({f i

j}) = 1 for all j ∈ [|Fi| − 1], and
vi({gj}) = 1 whenever xj ∈ Fi. All other valuations are set
to 0.

The input allocation A = (A1, . . . , Aq+1) is defined as
follows: The main agent aq+1 is assigned all the main goods,
i.e., Aq+1 := {g1, . . . , gp}. For every i ∈ [q], the dummy
agent ai is assigned the |Fi| − 1 dummy goods in the ith set,
i.e., Ai := {f i

1, . . . , f
i
|Fi|−1}. Note that in the allocation A,

each dummy agent envies the main agent by one approved
good, and these are the only pairs of agents with envy. Fi-
nally, given any allocation A, we define the aggregate envy
in A as the sum of all non-negative pairwise envy values,
i.e.,

E :=
∑

h∈[n]

∑
i �=h max{0, vi(Ah)− vi(Ai)}.

(⇒) Suppose Y ⊆ X , |Y | ≤ k is solution of the HIT-
TING SET instance. We claim that the allocation A is HEF
with respect to the set S := {gj : xj ∈ Y } with |S| ≤ k. In-
deed, since S is induced by a hitting set, each dummy agent
approves at least one good in S. Therefore, by hiding the
goods in S, the envy from the dummy agents can be elimi-
nated.

(⇐) Now suppose there exists S ⊆ [m], |S| ≤ k such
that A is HEF with respect to S. Then, for every i ∈ [q],
the set S must contain at least one good that is approved
by the dummy agent ai (otherwise A will not be envy-free
after hiding the goods in S). It is easy to see that the set
Y := {xj : gj ∈ S} constitutes the desired hitting set of
cardinality at most k.

Finally, to show the hardness-of-approximation, notice
that the aggregate envy in A is q because each dummy agent
envies the main agent by one unit of utility. The claim now
follows by substituting |F| = q = E in the inapproximabil-
ity result of HITTING SET stated above.

Our next result (Theorem 4) provides an approxi-
mation algorithm that (nearly) matches the hardness-of-
approximation result in Theorem 3. We remark that the al-
gorithm in Theorem 4 applies to any instance with additive
and possibly non-binary valuations.
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ALGORITHM 1: Greedy Approximation Algorithm for
HEF-k-VERIFICATION

Input: An instance 〈[n], [m],V〉 and an allocation A.
Output: A set S ⊆ [m].

Initialize S = ∅.
while f(S) ≥ 1 do

Set j′ ← argmaxj∈[m]\S f(S)− f(S ∪ {j})
� tiebreak lexicographically

Update S ← S ∪ {j′}
return S

Theorem 4 (Approximation algorithm). There is a
polynomial-time algorithm that, given as input any instance
of HEF-k-VERIFICATION, finds a set S ⊆ [m] with |S| ≤
kopt · lnE +1 such that the given allocation is HEF with re-
spect to S. Here, E and kopt denote the aggregate envy and
the number of goods that must be hidden under the given
allocation, respectively.

The proof of Theorem 4 is available in the full ver-
sion (Hosseini et al. 2019), but a brief idea is as follows:
For any set S ⊆ [m], define the residual envy function
f : 2[m] → R so that f(S) is the aggregate envy in allo-
cation A after hiding the goods in S. That is,

f(S) :=
∑

h∈[n]

∑
i �=h max{0, vi(Ah \ S)− vi(Ai)}.

The relevant observation is that f is supermodular. Given
this observation, the approximation guarantee in Theorem 4
can be obtained by the standard greedy algorithm for sub-
modular maximization, or, equivalently, supermodular min-
imization (Nemhauser, Wolsey, and Fisher 1978); see Algo-
rithm 1.

5 Experimental Results

We have seen that the worst-case computational results
for HEF-k, even in highly restricted settings, are largely
negative (Section 4). In this section, we will examine
whether the known algorithms for computing approximately
envy-free allocations—in particular, the four EF1 algo-
rithms described in Definition 4 in Section 3—can pro-
vide meaningful approximations to HEF-k in practice. Re-
call from Remark 2 that all four discussed algorithms—
RoundRobin, MNW, Alg-EF1+PO, and EnvyGraph—
satisfy uHEF-(n− 1).

We evaluate each algorithm in terms of (a) its regret (de-
fined below), and (b) the number of goods that the algo-
rithm must hide. Given an instance I and an allocation A,
let κ(A, I) denote the number of goods that must be hidden
under A. The regret of allocation A is the number of extra
goods that must be hidden under A compared to the opti-
mal. That is, reg(A, I) := κ(A, I)−minB κ(B, I). Simi-
larly, given an algorithm ALG, the regret of ALG is given by
reg(ALG(I), I), where ALG(I) is the allocation returned
by ALG for the input instance I. Note that the regret can be
large due to the suboptimality of an algorithm, but also due
to the size of the instance. To negate the effect of the latter,

we normalize the regret value by n− 1, which is the worst-
case upper bound on the number of hidden goods for all four
algorithms of interest.

Experiments on Synthetic Data

The setup for synthetic experiments is similar to that used
in Figure 1. Specifically, the number of agents, n, is var-
ied from 5 to 10, and the number of goods, m, is varied
from 5 to 20 (we ignore the cases where m < n). For every
fixed n and m, we generated 100 instances with binary valu-
ations drawn i.i.d. from Bernoulli distribution with parame-
ter 0.7 (i.e., vi,j ∼ Ber(0.7)). Table 2 shows the heatmaps of
the normalized regret (averaged over 100 instances) and the
number of goods that must be hidden (averaged over non-EF
instances, i.e., whenever k ≥ 1) for all four algorithms.3

It is clear that Alg-EF1+PO and RoundRobin al-
gorithms have a superior performance than MNW and
EnvyGraph. In particular, both Alg-EF1+PO and
RoundRobin have small normalized regret, suggesting
that they hide close-to-optimal number of goods. Addition-
ally, the number of hidden goods itself is small for these al-
gorithms (in most cases, no more than three goods need to be
hidden), suggesting that the worst-case bound of n−1 is un-
likely to arise in practice. Overall, our experiments suggest
that Alg-EF1+PO and RoundRobin can achieve useful
approximations to HEF-k in practice, especially in compar-
ison to MNW and EnvyGraph.4

Experiments on Real-World Data

For experiments with real-world data, we use the data from
the popular fair division website Spliddit (Goldman and Pro-
caccia 2014). The Spliddit data has 2212 instances in total,
where the number of agents n varies between 3 and 10, and
the number of goods m ≥ n varies between 3 and 93. Un-
like the synthetic data, the distribution of instances here is
rather uneven (see the full version online); in fact, 1821 of
the 2212 instances have n = 3 agents and m = 6 goods.
Therefore, instead of using heatmaps, we compare the al-
gorithms in terms of their normalized regret (averaged over
the entire dataset) and the cumulative distribution function
of the hidden goods (see Figure 2).

Figure 2 presents an interesting twist: MNW is now the best
performing algorithm, closely followed by RoundRobin
and Alg-EF1+PO. For any fixed k, the fraction of instances
for which these three algorithms compute an HEF-k alloca-
tion is also nearly identical. As can be observed, these al-
gorithms almost never need to hide more than three goods.
By contrast, EnvyGraph has the largest regret and sig-
nificantly worse cumulative performance. Therefore, once
again, Alg-EF1+PO and RoundRobin algorithms per-
form competitively with the optimal solution, making them
attractive options for achieving fair outcomes without with-
holding too much information.

3The full version (Hosseini et al. 2019) provides additional re-
sults for vi,j ∼ Ber(0.7), and vi,j ∼ Ber(0.5).

4In the full version of the paper (Hosseini et al. 2019), we pro-
vide two families of instances where the normalized worst-case re-
gret of MNW is large.
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Normalized average-case regret

Alg-EF1+PO RoundRobin MNW EnvyGraph
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Table 2: Results for synthetic data.
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Figure 2: Results for Spliddit data.

6 Future Work

The asymptotic existence of envy-free allocations has been
studied by Dickerson et al. (2014) and Manurangsi and
Suksompong (2019). Analyzing the asymptotic behavior
of HEF-k allocations is an interesting direction for future
work. Exploring the connection with other recently pro-
posed relaxations that involve discarding goods (Caragian-
nis, Gravin, and Huang 2019) or sharing a small subset of
goods (Sandomirskiy and Segal-Halevi 2019) might also be
interesting.
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